Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Cells ; 13(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334673

RESUMO

Retinal pigment epithelium (RPE) cells are important fundamentally for the development and function of the retina. In this regard, the study of the morphological and molecular properties of RPE cells, as well as their regenerative capabilities, is of particular importance for biomedicine. However, these studies are complicated by the fact that, despite the external morphological similarity of RPE cells, the RPE is a population of heterogeneous cells, the molecular genetic properties of which have begun to be revealed by sequencing methods only in recent years. This review carries out an analysis of the data from morphological and molecular genetic studies of the heterogeneity of RPE cells in mammals and humans, which reveals the individual differences in the subpopulations of RPE cells and the possible specificity of their functions. Particular attention is paid to discussing the properties of "stemness," proliferation, and plasticity in the RPE, which may be useful for uncovering the mechanisms of retinal diseases associated with pathologies of the RPE and finding new ways of treating them.


Assuntos
Epitélio Pigmentado da Retina , Células-Tronco , Animais , Humanos , Epitélio Pigmentado da Retina/fisiologia , Mamíferos
2.
Am J Physiol Cell Physiol ; 325(6): C1470-C1484, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899750

RESUMO

Epithelial tissues form selective barriers to ions, nutrients, waste products, and infectious agents throughout the body. Damage to these barriers is associated with conditions such as celiac disease, cystic fibrosis, diabetes, and age-related macular degeneration. Conventional electrophysiology measurements like transepithelial resistance can quantify epithelial tissue maturity and barrier integrity but are limited in differentiating between apical, basolateral, and paracellular transport pathways. To overcome this limitation, a combination of mathematical modeling, stem cell biology, and cell physiology led to the development of 3 P-EIS, a novel mathematical model and measurement technique. 3 P-EIS employs an intracellular pipette and extracellular electrochemical impedance spectroscopy to accurately measure membrane-specific properties of epithelia, without the constraints of prior models. 3 P-EIS was validated using electronic circuit models of epithelia with known resistances and capacitances, confirming a median error of 19% (interquartile range: 14%-26%) for paracellular and transcellular resistances and capacitances (n = 5). Patient stem cell-derived retinal pigment epithelium tissues were measured using 3 P-EIS, successfully isolating the cellular responses to adenosine triphosphate. 3 P-EIS enhances quality control in epithelial cell therapies and has extensive applicability in drug testing and disease modeling, marking a significant advance in epithelial physiology.NEW & NOTEWORTHY This interdisciplinary paper integrates mathematics, biology, and physiology to measure epithelial tissue's apical, basolateral, and paracellular transport pathways. A key advancement is the inclusion of intracellular voltage recordings using a sharp pipette, enabling precise quantification of relative impedance changes between apical and basolateral membranes. This enhanced electrochemical impedance spectroscopy technique offers insights into epithelial transport dynamics, advancing disease understanding, drug interactions, and cell therapies. Its broad applicability contributes significantly to epithelial physiology research.


Assuntos
Células Epiteliais , Epitélio Pigmentado da Retina , Humanos , Epitélio/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Membrana Celular/metabolismo , Modelos Teóricos
3.
Sci Rep ; 13(1): 3142, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823429

RESUMO

Ocular diseases resulting in death of the retinal pigment epithelium (RPE) lead to vision loss and blindness. There are currently no FDA-approved strategies to restore damaged RPE cells. Stimulating intrinsic regenerative responses within damaged tissues has gained traction as a possible mechanism for tissue repair. Zebrafish possess remarkable regenerative abilities, including within the RPE; however, our understanding of the underlying mechanisms remains limited. Here, we conducted an F0 in vivo CRISPR-Cas9-mediated screen of 27 candidate RPE regeneration genes. The screen involved injection of a ribonucleoprotein complex containing three highly mutagenic guide RNAs per target gene followed by PCR-based genotyping to identify large intragenic deletions and MATLAB-based automated quantification of RPE regeneration. Through this F0 screening pipeline, eight positive and seven negative regulators of RPE regeneration were identified. Further characterization of one candidate, cldn7b, revealed novel roles in regulating macrophage/microglia infiltration after RPE injury and in clearing RPE/pigment debris during late-phase RPE regeneration. Taken together, these data support the utility of targeted F0 screens for validating pro-regenerative factors and reveal novel factors that could regulate regenerative responses within the zebrafish RPE.


Assuntos
Epitélio Pigmentado da Retina , Peixe-Zebra , Animais , Epitélio Pigmentado da Retina/fisiologia , Peixe-Zebra/genética , Sistemas CRISPR-Cas/genética
4.
FASEB J ; 36(10): e22556, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36165194

RESUMO

Outer segment phagocytosis (OSP) is a highly-regulated, biological process wherein photoreceptor outer segment (OS) tips are cyclically phagocytosed by the adjacent retinal pigment epithelium (RPE) cells. Often an overlooked retinal process, rhythmic OSP ensures the maintenance of healthy photoreceptors and vision. Daily, the photoreceptors renew OS at their base and the most distal, and likely oldest, OS tips, are phagocytosed by the RPE, preventing the accumulation of photo-oxidative compounds by breaking down phagocytosed OS tips and recycling useful components to the photoreceptors. Light changes often coincide with an escalation of OSP and within hours the phagosomes formed in each RPE cell are resolved. In the last two decades, individual molecular regulators were elucidated. Some of the molecular machinery used by RPE cells for OSP is highly similar to mechanisms used by other phagocytic cells for the clearance of apoptotic cells. Consequently, in the RPE, many molecular regulators of retinal phagocytosis have been elucidated. However, there is still a knowledge gap regarding the key regulators of physiological OSP in vivo between endogenous photoreceptors and the RPE. Understanding the regulation of OSP is of significant clinical interest as age-related macular degeneration (AMD) and inherited retinal diseases (IRD) are linked with altered OSP. Here, we review the in vivo timing of OSP peaks in selected species and focus on the reported in vivo environmental and molecular regulators of OSP.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Fagocitose/fisiologia , Fagossomos , Células Fotorreceptoras , Epitélio Pigmentado da Retina/fisiologia
5.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012733

RESUMO

In all mammalian species tested to date, rod photoreceptor outer segment renewal is a circadian process synchronized by light with a burst of outer segment fragment (POS) shedding and POS phagocytosis by the adjacent retinal pigment epithelium (RPE) every morning at light onset. Recent reports show that RPE phagocytosis also increases shortly after dark onset in C57BL/6 (C57) mice. Genetic differences between C57 mice and 129T2/SvEmsJ (129) mice may affect regulation of outer segment renewal. Here, we used quantitative methods to directly compare outer segment renewal in C57 and 129 mouse retina. Quantification of rhodopsin-positive phagosomes in the RPE showed that in 129 mice, rod POS phagocytosis after light onset was significantly increased compared to C57 mice, but that 129 mice did not show a second peak after dark onset. Cone POS phagosome content of RPE cells did not differ by mouse strain with higher phagosome numbers after light than after dark. We further quantified externalization of the "eat me" signal phosphatidylserine by outer segment tips, which precedes POS phagocytosis. Live imaging of retina ex vivo showed that rod outer segments extended PS exposure in both strains but that frequency of outer segments with exposed PS after light onset was lower in C57 than in 129 retina. Taken together, 129 mice lacked a burst of rod outer segment renewal after dark onset. The increases in rod outer segment renewal after light and after dark onset in C57 mice were attenuated compared to the peak after light onset in 129 mice, suggesting an impairment in rhythmicity in C57 mice.


Assuntos
Ritmo Circadiano , Segmento Externo da Célula Bastonete , Animais , Ritmo Circadiano/fisiologia , Mamíferos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia , Fagossomos , Fosfatidilserinas , Epitélio Pigmentado da Retina/fisiologia , Segmento Externo da Célula Bastonete/fisiologia
6.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409021

RESUMO

In the vertebrate retina, the light-sensitive photoreceptor rods and cones constantly undergo renewal by generating new portions of the outer segment and shedding their distal, spent tips. The neighboring RPE provides the critical function of engulfing the spent material by phagocytosis. RPE phagocytosis of shed rod outer segment fragments is a circadian process that occurs in a burst of activity shortly after daily light onset with low activity at other times, a rhythm that has been reported for many species and over 50 years. In this review, we compare studies on the rhythm and quantity of RPE phagocytosis using different in vivo model systems and assessment methods. We discuss how measurement methodology impacts the observation and analysis of RPE phagocytosis. Published studies on RPE phagocytosis investigating mice further suggest that differences in genetic background and housing conditions may affect results. Altogether, a comparison between RPE phagocytosis studies performed using differing methodology and strains of the same species is not as straightforward as previously thought.


Assuntos
Fagocitose , Epitélio Pigmentado da Retina , Animais , Ritmo Circadiano/fisiologia , Camundongos , Fagocitose/genética , Retina , Epitélio Pigmentado da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes
7.
Retina ; 42(2): 313-320, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723901

RESUMO

PURPOSE: To investigate the interrelationship among the outer retinal layers after macular hole surgery and elucidate the restoration process. METHODS: This retrospective observational study included 50 eyes of 47 consecutive patients with closed macular holes in the first vitrectomy. Optical coherence tomography was obtained before surgery; at 1, 3, and 6 months postsurgery; and at the last visit. The complete continuous layer rate and mean defect length were evaluated for the outer nuclear layer (ONL), external limiting membrane (ELM), and ellipsoid zone (EZ). RESULTS: At all postoperative visits, the complete continuous layer rate was in the descending order of ELM, ONL, and EZ and the mean defect length was in the ascending order of ELM, ONL, and EZ. External limiting membrane was necessary for ONL restoration. External limiting membrane and ONL were necessary for EZ restoration. Hyperreflective protrusions were observed from the area lacking ELM into the subretinal space after surgery. Ellipsoid zone was not formed in coexistence with the hyperreflective protrusions. Intermediate reflective protrusions appeared under the ONL plus ELM after surgery and were eventually replaced by EZ. CONCLUSION: Restoration of the outer retinal layers after surgical macular hole closure occurs in the order of ELM, ONL, and EZ.


Assuntos
Membrana Basal/fisiologia , Tamponamento Interno , Neurônios Retinianos/fisiologia , Perfurações Retinianas/cirurgia , Epitélio Pigmentado da Retina/fisiologia , Vitrectomia , Idoso , Membrana Basal/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Perfurações Retinianas/diagnóstico por imagem , Perfurações Retinianas/fisiopatologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Estudos Retrospectivos , Hexafluoreto de Enxofre/administração & dosagem , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia
8.
Sci Rep ; 11(1): 23564, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876605

RESUMO

Factor quinolinone inhibitors are promising anti-cancer compounds, initially characterized as specific inhibitors of the oncogenic transcription factor LSF (TFCP2). These compounds exert anti-proliferative activity at least in part by disrupting mitotic spindles. Herein, we report additional interphase consequences of the initial lead compound, FQI1, in two telomerase immortalized cell lines. Within minutes of FQI1 addition, the microtubule network is disrupted, resulting in a substantial, although not complete, depletion of microtubules as evidenced both by microtubule sedimentation assays and microscopy. Surprisingly, this microtubule breakdown is quickly followed by an increase in tubulin acetylation in the remaining microtubules. The sudden breakdown and partial depolymerization of the microtubule network precedes FQI1-induced morphological changes. These involve rapid reduction of cell spreading of interphase fetal hepatocytes and increase in circularity of retinal pigment epithelial cells. Microtubule depolymerization gives rise to FH-B cell compaction, as pretreatment with taxol prevents this morphological change. Finally, FQI1 decreases the rate and range of locomotion of interphase cells, supporting an impact of FQI1-induced microtubule breakdown on cell motility. Taken together, our results show that FQI1 interferes with microtubule-associated functions in interphase, specifically cell morphology and motility.


Assuntos
Benzodioxóis/farmacologia , Microtúbulos/efeitos dos fármacos , Quinolonas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Forma Celular/efeitos dos fármacos , Forma Celular/fisiologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Hepatócitos/ultraestrutura , Humanos , Interfase , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/fisiologia , Epitélio Pigmentado da Retina/ultraestrutura , Fatores de Transcrição/antagonistas & inibidores , Tubulina (Proteína)/metabolismo
9.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768833

RESUMO

(Poly)phenol-derived metabolites are small molecules resulting from (poly)phenol metabolization after ingestion that can be found in circulation. In the last decade, studies on the impact of (poly)phenol properties in health and cellular metabolism accumulated evidence that (poly)phenols are beneficial against human diseases. Diabetic retinopathy (DR) is characterized by inflammation and neovascularization and targeting these is of therapeutic interest. We aimed to study the effect of pyrogallol-O-sulfate (Pyr-s) metabolite in the expression of proteins involved in retinal glial activation, neovascularization, and glucose transport. The expression of PEDF, VEGF, and GLUT-1 were analyzed upon pyrogallol-O-sulfate treatment in RPE cells under high glucose and hypoxia. To test its effect on a diabetic mouse model, Ins2Akita mice were subjected to a single intraocular injection of the metabolite and the expression of PEDF, VEGF, GLUT-1, Iba1, or GFAP measured in the neural retina and/or retinal pigment epithelium (RPE), two weeks after treatment. We observed a significant decrease in the expression of pro-angiogenic VEGF in RPE cells. Moreover, pyrogallol-O-sulfate significantly decreased the expression of microglial marker Iba1 in the diabetic retina at different stages of disease progression. These results highlight the potential pyrogallol-O-sulfate metabolite as a preventive approach towards DR progression, targeting molecules involved in both inflammation and neovascularization.


Assuntos
Microglia/metabolismo , Pirogalol/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Proteínas do Olho/metabolismo , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Neovascularização Patológica/metabolismo , Fatores de Crescimento Neural/metabolismo , Polifenóis/farmacologia , Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/fisiologia , Estreptozocina/farmacologia , Sulfatos/metabolismo , Sulfatos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Biomed Res Int ; 2021: 6666506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34761005

RESUMO

Age-related macular degeneration (AMD) is a multifactor disease, which is primarily characterized by retinal pigment epithelium (RPE) cell loss. Since the retina is the most metabolically active tissue, RPE cells are exposed to consistent oxidative environment. So, oxidation-induced RPE cell death has long been considered a contributor to the onset of AMD. Here, we applied a retinal degeneration (RD) rat model induced by blue light-emitting diode (LED) and a cell model constructed by H2O2 stimulus to mimic the prooxidant environment of the retina. We detected that the expression of miR-27a was upregulated and the expression of FOXO1 was downregulated in both models. So, we furtherly investigated the role of miR-27a-FOXO1 axis in RPE in protesting against oxidants. Lentivirus-mediated RNA was injected intravitreally into rats to modulate the miR-27a-FOXO1 axis. Retinal function and histopathological changes were evaluated by electroretinography (ERG) analysis and hematoxylin and eosin (H&E) staining, respectively. Massive photoreceptor and RPE cell death were examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). The damage to the retina was aggravated in the FOXO1 gene-knockdown and miR-27a-overexpression groups after exposure to LED but was alleviated in the FOXO1 gene-overexpression or miR-27a-knockdown groups. Dual luciferase assay was used to detect the binding site of miR-27a and FOXO1. Upregulated miR-27a inhibited the expression of FOXO1 by directly binding to the FOXO1 mRNA 3'UTR and decreased the autophagy activity of ARPE-19 cells, resulting in the accumulation of reactive oxygen species (ROS) and decrease of cell viability. The results suggest that miR-27a is a negative regulator of FOXO1. Also, our data emphasize the prominent role of miR-27a/FOXO1 axis in modulating ROS accumulation and cell death in RPE cell model under oxidative stress and influencing the retinal function in the LED-induced RD rat model.


Assuntos
MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Autofagia/genética , Morte Celular/genética , Sobrevivência Celular/genética , China , Proteína Forkhead Box O1/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/fisiopatologia , Masculino , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Oxirredução , Estresse Oxidativo/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Retina/patologia , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/fisiologia
11.
J Cell Mol Med ; 25(19): 9084-9088, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34448530

RESUMO

Retinal pigment epithelium (RPE) is a highly polarized epithelial monolayer lying between the photoreceptor layer and the Bruch membrane. It is essential for vision through participating in many critical activities, including phagocytosis of photoreceptor outer segments, recycling the visual cycle-related compounds, forming a barrier to control the transport of nutrients, ions, and water, and the removal of waste. Primary cilia are conservatively present in almost all the vertebrate cells and acts as a sensory organelle to control tissue development and homeostasis maintenance. Numerous studies reveal that abnormalities in RPE lead to various retinal diseases, such as age-related macular degeneration and diabetic macular oedema, but the mechanism of primary cilia in these physiological and pathological activities remains to be elucidated. Herein, we summarize the functions of primary cilia in the RPE development and the mutations of ciliary genes identified in RPE-related diseases. By highlighting the significance of primary cilia in regulating the physiological and pathological processes of RPE, we aim to provide novel insights for the treatment of RPE-related retinal diseases.


Assuntos
Cílios/fisiologia , Organogênese , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/fisiologia , Animais , Biomarcadores , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Doenças Retinianas/diagnóstico , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Doenças Retinianas/terapia
12.
J Vet Sci ; 22(5): e65, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34423602

RESUMO

BACKGROUND: To assess the normal retina of the pigeon eye using spectral domain optical coherence tomography (SD-OCT) and establish a normative reference. METHODS: Twelve eyes of six ophthalmologically normal pigeons (Columba livia) were included. SD-OCT images were taken with dilated pupils under sedation. Four meridians, including the fovea, optic disc, red field, and yellow field, were obtained in each eye. The layers, including full thickness (FT), ganglion cell complex (GCC), thickness from the retinal pigmented epithelium to the outer nuclear layer (RPE-ONL), and from the retinal pigmented epithelium to the inner nuclear layer (RPE-INL), were manually measured. RESULTS: The average FT values were significantly different among the four meridians (p < 0.05), with the optic disc meridian being the thickest (294.0 ± 13.9 µm). The average GCC was thickest in the optic disc (105.3 ± 27.1 µm) and thinnest in the fovea meridian (42.8 ± 15.3 µm). The average RPE-INL of the fovea meridian (165.5 ± 18.3 µm) was significantly thicker than that of the other meridians (p < 0.05). The average RPE-ONL of the fovea, optic disc, yellow field, and red field were 91.2 ± 5.2 µm, 87.7 ± 5.3 µm, 87.6 ± 6.5 µm, and 91.4 ± 3.9 µm, respectively. RPE-INL and RPE-ONL thickness of the red field meridian did not change significantly with measurement location (p > 0.05). CONCLUSIONS: Measured data could be used as normative references for diagnosing pigeon retinopathies and further research on avian fundus structure.


Assuntos
Columbidae/anatomia & histologia , Retina/anatomia & histologia , Tomografia de Coerência Óptica/veterinária , Animais , Columbidae/fisiologia , Valores de Referência , Retina/fisiologia , Epitélio Pigmentado da Retina/anatomia & histologia , Epitélio Pigmentado da Retina/fisiologia
13.
Cells ; 10(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34440696

RESUMO

The diurnal phagocytosis of spent photoreceptor outer segment fragments (POS) by retinal pigment epithelial (RPE) cells is essential for visual function. POS internalization by RPE cells requires the assembly of F-actin phagocytic cups beneath surface-tethered POS and Mer tyrosine kinase (MerTK) signaling. The activation of the Rho family GTPase Rac1 is necessary for phagocytic cup formation, and Rac1 is activated normally in MerTK-deficient RPE. We show here that mutant RPE lacking MerTK and wild-type RPE deprived of MerTK ligand both fail to form phagocytic cups regardless of Rac1 activation. However, in wild-type RPE in vivo, a decrease in RhoA activity coincides with the daily phagocytosis burst, while RhoA activity in MerTK-deficient RPE is constant. Elevating RhoA activity blocks phagocytic cup formation and phagocytosis by wild-type RPE. Conversely, inhibiting RhoA effector Rho kinases (ROCKs) rescues both F-actin assembly and POS internalization of primary RPE if MerTK or its ligand are lacking. Most strikingly, acute ROCK inhibition is sufficient to induce the formation and acidification of endogenous POS phagosomes by MerTK-deficient RPE ex vivo. Altogether, RhoA pathway inactivation is a necessary and sufficient downstream effect of MerTK phagocytic signaling such that the acute manipulation of cytosolic ROCK activity suffices to restore phagocytic capacity to MerTK-deficient RPE.


Assuntos
Fagocitose , Epitélio Pigmentado da Retina/enzimologia , Transdução de Sinais , c-Mer Tirosina Quinase/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
FASEB J ; 35(7): e21722, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160105

RESUMO

Retinal photoreceptors undergo daily renewal of their distal outer segments, a process indispensable for maintaining retinal health. Photoreceptor outer segment (POS) phagocytosis occurs as a daily peak, roughly about 1 hour after light onset. However, the underlying cellular and molecular mechanisms which initiate this process are still unknown. Here we show that, under constant darkness, mice deficient for core circadian clock genes (Per1 and Per2) lack a daily peak in POS phagocytosis. By qPCR analysis, we found that core clock genes were rhythmic over 24 hours in both WT and Per1, Per2 double mutant whole retinas. More precise transcriptomics analysis of laser capture microdissected WT photoreceptors revealed no differentially expressed genes between time points preceding and during the peak of POS phagocytosis. In contrast, we found that microdissected WT retinal pigment epithelium (RPE) had a number of genes that were differentially expressed at the peak phagocytic time point compared to adjacent ones. We also found a number of differentially expressed genes in Per1, Per2 double mutant RPE compared to WT ones at the peak phagocytic time point. Finally, based on STRING analysis, we found a group of interacting genes that potentially drive POS phagocytosis in the RPE. This potential pathway consists of genes such as: Pacsin1, Syp, Camk2b, and Camk2d among others. Our findings indicate that Per1 and Per2 are necessary clock components for driving POS phagocytosis and suggest that this process is transcriptionally driven by the RPE.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Fagocitose/genética , Células Fotorreceptoras de Vertebrados/fisiologia , Retina/fisiologia , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia , Células Fotorreceptoras/fisiologia , Epitélio Pigmentado da Retina/fisiologia , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
15.
Invest Ophthalmol Vis Sci ; 62(7): 21, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34144609

RESUMO

Purpose: For this study we aimed to understand if retinal pigment epithelial (RPE) cells express antimicrobial peptide lysozyme as a mechanism to protect the neuroretina from blood-borne pathogens. Methods: The expression of lysozyme in human and mouse RPE cells was examined by RT-PCR or immune (cyto)histochemistry in cell cultures or retinal sections. RPE cultures were treated with different concentrations of Pam3CSK4, lipopolysaccharides (LPS), staphylococcus aureus-derived peptidoglycan (PGN-SA), Poly(I:C), and Poly(dA:dT). The mRNA expression of lysozyme was examined by qPCR and protein expression by ELISA. Poly(I:C) was injected into the subretinal space of C57BL/6J mice and eyes were collected 24 hours later and processed for the evaluation of lysozyme expression by confocal microscopy. Bactericidal activity was measured in ARPE19 cells following LYZ gene deletion using Crispr/Cas9 technology. Results: The mRNA and protein of lysozyme were detected in mouse and human RPE cells under normal conditions, although the expression levels were lower than mouse microglia BV2 or human monocytes THP-1 cells, respectively. Immunohistochemistry showed punctate lysozyme expression inside RPE cells. Lysozyme was detected by ELISA in normal RPE lysates, and in live bacteria-treated RPE supernatants. Treatment of RPE cells with Pam3CSK4, LPS, PGN-SA, and Poly(I:C) enhanced lysozyme expression. CRISPR/Cas9 deletion of lysozyme impaired bactericidal activity of ARPE19 cells and reduced their response to LPS and Poly(I:C) stimulation. Conclusions: RPE cells constitutively express antimicrobial peptide lysozyme and the expression is modulated by pathogenic challenges. RPE cells may protect the neuroretina from blood-borne pathogens by producing antimicrobial peptides, such as lysozyme.


Assuntos
Lipopeptídeos/fisiologia , Muramidase , Retina , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Barreira Hematorretiniana/imunologia , Barreira Hematorretiniana/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Muramidase/genética , Muramidase/farmacologia , Poli I-C/metabolismo , Poli I-C/farmacologia , Fatores de Proteção , Retina/imunologia , Retina/metabolismo , Epitélio Pigmentado da Retina/fisiologia
16.
Front Immunol ; 12: 621007, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054796

RESUMO

Replacement of dysfunctional retinal pigmented epithelium (RPE) with grafts derived from stem cells has the potential to improve vision for patients with retinal disorders. In fact, the potential is such that a great number of groups are attempting to realize this therapy through individual strategies with a variety of stem cell products, hosts, immunomodulatory regimen, and techniques to assess the success of their design. Comparing the findings of different investigators is complicated by a number of factors. The immune response varies greatly between xenogeneic and allogeneic transplantation. A unique immunologic environment is created in the subretinal space, the target of RPE grafts. Both functional assessment and imaging techniques used to evaluate transplants are susceptible to erroneous conclusions. Lastly, the pharmacologic regimens used in RPE transplant trials are as numerous and variable as the trials themselves, making it difficult to determine useful results. This review will discuss the causes of these complicating factors, digest the strategies and results from clinical and preclinical studies, and suggest places for improvement in the design of future transplants and investigations.


Assuntos
Rejeição de Enxerto/imunologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Degeneração Macular/terapia , Transplante de Órgãos , Epitélio Pigmentado da Retina/fisiologia , Animais , Humanos , Epitélio Pigmentado da Retina/transplante , Tolerância ao Transplante
17.
Sci Rep ; 11(1): 10260, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986362

RESUMO

Human and animal retinal optical coherence tomography (OCT) images show a hyporeflective band (HB) between the photoreceptor tip and retinal pigment epithelium layers whose mechanisms are unclear. In mice, HB magnitude and the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness appear to be dependent on light exposure, which is known to alter photoreceptor mitochondria respiration. Here, we test the hypothesis that these two OCT biomarkers are linked to metabolic activity of the retina. Acetazolamide, which acidifies the subretinal space, had no significant impact on HB magnitude but produced ELM-RPE thinning. Mitochondrial stimulation with 2,4-dinitrophenol reduced both HB magnitude and ELM-RPE thickness in parallel, and also reduced F-actin expression in the same retinal region, but without altering ERG responses. For mice strains with relatively lower (C57BL/6J) or higher (129S6/ev) rod mitochondrial efficacy, light-induced changes in HB magnitude and ELM-RPE thickness were correlated. Humans, analyzed from published data captured with a different protocol, showed a similar light-dark change pattern in HB magnitude as in the mice. Our results indicate that mitochondrial respiration underlies changes in HB magnitude upstream of the pH-sensitive ELM-RPE thickness response. These two distinct OCT biomarkers could be useful indices for non-invasively evaluating photoreceptor mitochondrial metabolic activity.


Assuntos
Retina/metabolismo , Retina/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Animais , Respiração Celular/fisiologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Células Fotorreceptoras/fisiologia , Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/fisiologia , Tomografia de Coerência Óptica/métodos
18.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925448

RESUMO

Disruption of retinal pigment epithelial (RPE barrier integrity is a hallmark feature of various retinal blinding diseases, including diabetic macular edema and age-related macular degeneration, but the underlying causes and pathophysiology are not completely well-defined. One of the most conserved phenomena in biology is the progressive decline in mitochondrial function with aging leading to cytopathic hypoxia, where cells are unable to use oxygen for energy production. Therefore, this study aimed to thoroughly investigate the role of cytopathic hypoxia in compromising the barrier functionality of RPE cells. We used Electric Cell-Substrate Impedance Sensing (ECIS) system to monitor precisely in real time the barrier integrity of RPE cell line (ARPE-19) after treatment with various concentrations of cytopathic hypoxia-inducing agent, Cobalt(II) chloride (CoCl2). We further investigated how the resistance across ARPE-19 cells changes across three separate parameters: Rb (the electrical resistance between ARPE-19 cells), α (the resistance between the ARPE-19 and its substrate), and Cm (the capacitance of the ARPE-19 cell membrane). The viability of the ARPE-19 cells and mitochondrial bioenergetics were quantified with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and seahorse technology, respectively. ECIS measurement showed that CoCl2 reduced the total impedance of ARPE-19 cells in a dose dependent manner across all tested frequencies. Specifically, the ECIS program's modelling demonstrated that CoCl2 affected Rb as it begins to drastically decrease earlier than α or Cm, although ARPE-19 cells' viability was not compromised. Using seahorse technology, all three concentrations of CoCl2 significantly impaired basal, maximal, and ATP-linked respirations of ARPE-19 cells but did not affect proton leak and non-mitochondrial bioenergetic. Concordantly, the expression of a major paracellular tight junction protein (ZO-1) was reduced significantly with CoCl2-treatment in a dose-dependent manner. Our data demonstrate that the ARPE-19 cells have distinct dielectric properties in response to cytopathic hypoxia in which disruption of barrier integrity between ARPE-19 cells precedes any changes in cells' viability, cell-substrate contacts, and cell membrane permeability. Such differences can be used in screening of selective agents that improve the assembly of RPE tight junction without compromising other RPE barrier parameters.


Assuntos
Técnicas Biossensoriais/métodos , Hipóxia Celular , Cobalto/farmacologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/fisiologia , Técnicas Biossensoriais/instrumentação , Adesão Celular , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cobalto/administração & dosagem , Relação Dose-Resposta a Droga , Impedância Elétrica , Eletrodos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo
19.
FASEB J ; 35(4): e21406, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724552

RESUMO

Human-induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) is a powerful tool for pathophysiological studies and preclinical therapeutic screening, as well as a source for clinical cell transplantation. Thus, it must be validated for maturity and functionality to ensure correct data readouts and clinical safety. Previous studies have validated hiPSC-derived RPE as morphologically characteristic of the tissue in the human eye. However, information concerning the expression and functionality of ion channels is still limited. We screened hiPSC-derived RPE for the polarized expression of a panel of L-type (CaV 1.1, CaV 1.3) and T-type (CaV 3.1, CaV 3.3) Ca2+ channels, K+ channels (Maxi-K, Kir4.1, Kir7.1), and the Cl- channel ClC-2 known to be expressed in native RPE. We also tested the roles of these channels in key RPE functions using specific inhibitors. In addition to confirming the native expression profiles and function of certain channels, such as L-type Ca2+ channels, we show for the first time that T-type Ca2+ channels play a role in both phagocytosis and vascular endothelial growth factor (VEGF) secretion. Moreover, we demonstrate that Maxi-K and Kir7.1 channels are involved in the polarized secretion of VEGF and pigment epithelium-derived factor (PEDF). Furthermore, we show a novel localization for ClC-2 channel on the apical side of hiPSC-derived RPE, with an overexpression at the level of fluid-filled domes, and demonstrate that it plays an important role in phagocytosis, as well as VEGF and PEDF secretion. Taken together, hiPSC-derived RPE is a powerful model for advancing fundamental knowledge of RPE functions.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Canais de Cloreto/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Canais de Potássio/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Canais de Cálcio Tipo T/genética , Diferenciação Celular , Canais de Cloreto/genética , Regulação da Expressão Gênica , Humanos , Canais de Potássio/genética
20.
FASEB J ; 35(3): e21403, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559185

RESUMO

The retinal pigment epithelium (RPE) undergoes characteristic structural changes and epithelial-mesenchymal transition (EMT) during normal aging, which are exacerbated in age-related macular degeneration (AMD). Although the pathogenic mechanisms of aging and AMD remain unclear, transforming growth factor-ß1 (TGF-ß1) is known to induce oxidative stress, morphometric changes, and EMT as a senescence-promoting factor. In this study, we examined whether intravitreal injection of TGF-ß1 into the mouse eye elicits senescence-like morphological alterations in the RPE and if this can be prevented by suppressing mammalian target of rapamycin complex 1 (mTORC1) or NADPH oxidase (NOX) signaling. We verified that intravitreal TGF-ß1-induced stress fiber formation and EMT in RPE cells, along with age-associated morphometric changes, including increased variation in cell size and reduced cell density. In RPE cells, exogenous TGF-ß1 increased endogenous expression of TGF-ß1 and upregulated Smad3-ERK1/2-mTORC1 signaling, increasing reactive oxygen species (ROS) production and EMT. We demonstrated that inhibition of the mTORC1-NOX4 pathway by pretreatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-dependent protein kinase, or GKT137831, a NOX1/4 inhibitor, decreased ROS generation, prevented stress fiber formation, attenuated EMT, and improved the regularity of the RPE structure in vitro and in vivo. These results suggest that intravitreal TGF-ß1 injection could be used as a screening model to investigate the aging-related structural and functional changes to the RPE. Furthermore, the regulation of TGF-ß-mTORC1-NOX signaling could be a potential therapeutic target for reducing pathogenic alterations in aged RPE and AMD.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , NADPH Oxidases/fisiologia , Epitélio Pigmentado da Retina/patologia , Fator de Crescimento Transformador beta1/fisiologia , Animais , Células Cultivadas , Senescência Celular , Transição Epitelial-Mesenquimal , Injeções Intravítreas , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/antagonistas & inibidores , Pirazolonas/farmacologia , Piridonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...